Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131451, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614177

RESUMO

In this study, citric acid successfully reacted with agar through the dry heat method, and citrate agar (CA) gel was used to stabilize O/W emulsions. The mechanisms of the CA structure and emulsion pH that affected emulsion stabilization were analyzed, and the application of CA gel emulsion (CAGE) was explored. Compared with native agar (NA), CA showed lower gel strength, higher transparency, and higher water contact angle. These changes indicate that a cross-linking reaction occurred, and it was demonstrated via FTIR and NMR. The emulsion properties were evaluated using particle size, ζ-potential, and the emulsification activity index. Results showed that CAGEs had a smaller particle size and lower ζ-potential than the native agar gel emulsion (NAGE). Meanwhile, confocal laser scanning microscopy confirmed that the CA gels stabilized the emulsions by forming a protective film around the oil droplets. Stability experiments revealed that CAGE (prepared with CA gel [DS = 0.145]) exhibited better stability than NAGE in the pH range of 3-11, and the rheological results further confirmed that the stability of the emulsions was influenced by the network structure and oil droplet interaction forces. Afterward, the application prospect of CAGE was evaluated by encapsulating vitamin D3 and curcumin.

2.
Int J Biol Macromol ; 263(Pt 2): 130051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350580

RESUMO

A new type of core-shell microsphere was prepared by a pre-crosslinking method, consisting of cross-linked agarose microspheres as the core and agarose-dextran as the shell. After optimizing the preparation process, the microspheres with a uniform particle size were obtained and characterized using cryo-scanning electron microscopy to determine their surface and cross-sectional morphology. Results from flow rate-pressure and chromatographic performance tests showed that the core-shell agarose microspheres were supported by the core microspheres and composed of composite polysaccharides, forming an interpenetrating polymer network structure as a hard shell. The core-shell agarose microspheres showed a 300.5 % increase in linear flow rate compared to composite polysaccharide microspheres prepared from shell materials and a 141.5 % increase compared to 6 % agarose microspheres. Additionally, the large pore structure of the shell combined with the fine pore structure of the core improved the material separation efficiency in the range of 0.1-2000 kDa. These findings suggest that core-shell natural polysaccharide microspheres have great potential as a separation chromatographic medium.


Assuntos
Dextranos , Microesferas , Sefarose , Estudos Transversais , Microscopia Eletrônica de Varredura
3.
Enzyme Microb Technol ; 175: 110410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340378

RESUMO

Prunin of desirable bioactivity and bioavailability can be transformed from plant-derived naringin by the key enzyme α-L-rhamnosidase. However, the production was limited by unsatisfactory properties of α-L-rhamnosidase such as thermostability and organic solvent tolerance. In this study, biochemical characteristics, and hydrolysis capacity of a novel α-L-rhamnosidase from Spirochaeta thermophila (St-Rha) were investigated, which was the first characterized α-L-rhamnosidase for Spirochaeta genus. St-Rha showed a higher substrate specificity towards naringin and exhibited excellent thermostability and methanol tolerance. The Km of St-Rha in the methanol cosolvent system was decreased 7.2-fold comparing that in the aqueous phase system, while kcat/Km value of St-Rha was enhanced 9.3-fold. Meanwhile, a preliminary conformational study was implemented through comparative molecular dynamics simulation analysis to explore the mechanism underlying the methanol tolerance of St-Rha for the first time. Furthermore, the catalytic ability of St-Rha for prunin preparation in the 20% methanol cosolvent system was explored, and 200 g/L naringin was transformed into 125.5 g/L prunin for 24 h reaction with a corresponding space-time yield of 5.2 g/L/h. These results indicated that St-Rha was a novel α-L-rhamnosidase suitable for hydrolyzing naringin in the methanol cosolvent system and provided a better alternative for improving the efficient production yield of prunin.


Assuntos
Florizina/análogos & derivados , Spirochaeta , Metanol , Glicosídeo Hidrolases/química , Solventes
4.
J Microbiol Biotechnol ; 34(1): 132-140, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-37957113

RESUMO

In this study, carrageenase immobilization was evaluated with a concise and efficient strategy. Pomelo peel cellulose (PPC) modified by polyethyleneimine (PEI) using the physical absorption method was used as a carrier to immobilize carrageenase and achieved repeated batch catalysis. In addition, various immobilization and reaction parameters were scrutinized to enhance the immobilization efficiency. Under the optimized conditions, the enzyme activity recovery rate was more than 50% and 4.1 times higher than immobilization with non-modified pomelo peels. The optimum temperature and pH of carrageenase after immobilization by PEI-modified pomelo peel, at 60°C and 7.5 respectively, were in line with the free enzyme. The temperature resistance was reduced, inconsistent with free enzyme, and pH resistance was increased. A significant loss of activity (46.8%) was observed after reusing it thrice under optimal reaction conditions. In terms of stability, the immobilized enzyme conserved 76.0% of the initial enzyme activity after 98 days of storage. Furthermore, a modest decrease in the kinetic constant (Km) value was observed, indicating the improved substrate affinity of the immobilized enzyme. Therefore, modified pomelo peel is a verified and promising enzyme immobilization system for the synthesis of inorganic solvents.


Assuntos
Enzimas Imobilizadas , Polietilenoimina , Enzimas Imobilizadas/metabolismo , Estabilidade Enzimática , Polietilenoimina/química , Concentração de Íons de Hidrogênio , Cinética , Temperatura
5.
Int J Biol Macromol ; 255: 128196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984583

RESUMO

Antioxidant and antimicrobial agarose coatings were developed by grafting gallic acid through the carbodiimide coupling method. Structural characterization revealed that the carboxyl group of gallic acid was successfully grafted onto the C6-OH of D-galactose in agarose, with the highest observed grafting ratio being 13.73 %. The grafting of gallic acid significantly increased the antioxidant and bacteriostatic activities of the agarose. As the grafting ratio of gallic acid-modified agarose (GaAg) increased from 0 to 13.73 %, the scavenging ratio of DPPH and the inhibition ratio of ß-carotene bleaching were observed to increase from 0 % to 65.92 % and 6.89 % to 73.46 %, respectively. GaAg exhibited up to 100 % inhibition of Escherichia coli and Staphylococcus aureus. The physicochemical properties of gel strength, viscosity, gelling temperature and melting temperature decreased to 971.3 g/cm2, 17.9 mPa·s, 31.7 °C and 84.1 °C, respectively. The gel contact angle was increased from 22.1° to 73.6°. Fish preservation tests have demonstrated that it effectively inhibited bacterial growth, prevented fat oxidation, blocked light, reduced moisture loss, and enhanced the overall quality of grass carp (Ctenopharyngodon idellus) fillets during refrigeration, which was more effective than native agarose in extending the shelf life of fish. Therefore, GaAg holds promise as an aquatic product preservative.


Assuntos
Antioxidantes , Carpas , Animais , Antioxidantes/farmacologia , Ácido Gálico , Sefarose , Embalagem de Produtos
6.
Int J Biol Macromol ; 253(Pt 5): 127185, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37797859

RESUMO

Pickering emulsions was successfully fabricated using ball-milled agar particles with sizes and sulfate content around 7 µm and 0.62 %, respectively. These particles were obtained through a simple media-milling process using agar powders initially sized at 120 µm. The lamellated agar is aggregated into a mass after the milling process. The surface charge and hydrophobicity of the ball-milled agar particles were characterized through zeta potential and contact angle measurements, respectively. The droplet size of Pickering emulsions was related to oil fraction and particle concentration, ranging from approximately 45 µm to 80 µm. Ball-milled agar stabilized emulsions were sensitive to pH and salt conditions. The results of confocal laser scanning microscopy and cryo-SEM showed that at low particle concentrations and oil fractions, ball-milled agar stabilized the emulsions by dispersing particles on the surface of the oil droplets through electrostatic repulsion. Conversely, ball-milled agar stabilized the emulsions under high particle concentrations and oil fractions by forming a gel network structure to bind the oil droplets. In this research, this developed method provides the basis for the high-value application of agar and a new idea for preparing stable food-grade Pickering emulsion-based functional foods using raw-food material without surface wettability.


Assuntos
Emulsificantes , Emulsões/química , Ágar , Emulsificantes/química , Interações Hidrofóbicas e Hidrofílicas , Molhabilidade , Tamanho da Partícula
7.
Mar Drugs ; 21(5)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37233493

RESUMO

Numerous compounds present in the ocean are contributing to the development of the biomedical field. Agarose, a polysaccharide derived from marine red algae, plays a vital role in biomedical applications because of its reversible temperature-sensitive gelling behavior, excellent mechanical properties, and high biological activity. Natural agarose hydrogel has a single structural composition that prevents it from adapting to complex biological environments. Therefore, agarose can be developed into different forms through physical, biological, and chemical modifications, enabling it to perform optimally in different environments. Agarose biomaterials are being increasingly used for isolation, purification, drug delivery, and tissue engineering, but most are still far from clinical approval. This review classifies and discusses the preparation, modification, and biomedical applications of agarose, focusing on its applications in isolation and purification, wound dressings, drug delivery, tissue engineering, and 3D printing. In addition, it attempts to address the opportunities and challenges associated with the future development of agarose-based biomaterials in the biomedical field. It should help to rationalize the selection of the most suitable functionalized agarose hydrogels for specific applications in the biomedical industry.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Sefarose/química , Hidrogéis/química , Materiais Biocompatíveis/química , Engenharia Tecidual , Sistemas de Liberação de Medicamentos
8.
Int J Biol Macromol ; 239: 124254, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37003393

RESUMO

Agar benzoate (AB) with different degrees of substitution (DS) was synthesized by the esterification of agar and benzoic anhydride in aqueous solution. The DS could be regulated by adjusting composition ratio, pH, and temperature. Its chemical structure was determined by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). 13C NMR spectrum of the AB suggested the main substitution occurred at the C-6 in the d-galactopyranose. Cryo-scanning electron microscopy (Cryo-SEM) showed that the aperture of AB was larger than that of agar. The thermal performance of AB decreased slightly, but this did not affect its performance. AB showed the highest relative antibacterial activity against Escherichia coli, S. aureus and Alternaria alternata, reaching 100 % (AB 20 g/L), 100 % (AB 40 g/L) and 19.35 % (7 d incubation), respectively. Moreover, the obtained AB possessed good emulsion stability. These antibacterial AB have broad application prospects in the field of fruit and vegetable preservation.


Assuntos
Antibacterianos , Staphylococcus aureus , Ágar/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Benzoatos/farmacologia
9.
Carbohydr Polym ; 310: 120742, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925257

RESUMO

Eucheuma polysaccharides have varieties of biological activities. However, it is accompanied by problems like large molecular weight, high viscosity, and low utilization. Here, we first prepared fermented Eucheuma spinosum polysaccharides (F-ESP) by Lactobacillus fermentation, compared with low-temperature freeze-thaw ESP (L-ESP) prepared by the freeze-thaw method, explored the composition and structural characteristics of F-ESP and L-ESP, and evaluation of the ability of different samples to inhibit mast cell degranulation using classical mast cell model. Then, the activity of L-ESP and F-ESP in vivo was preliminarily evaluated using a passive cutaneous anaphylaxis model. Two kinds of F-ESP named F1-ESP-3 and F2-ESP-3 were obtained by fermentation of Eucheuma spinosum with the selected strains of Lactobacillus.sakei subsp.sakei and Lactobacillus.rhamnosus. Compared with the purified component L-ESP-3, the monosaccharide composition of F1-ESP-3 contains more glucuronic acid, the molecular weight reduced from >600 kDa (L-ESP-3) to 28.30 kDa (F1-ESP-3) and 33.58 kDa (F2-ESP-3), F1-ESP-3 has higher solubility and lower apparent viscosity. Fermentation did not destroy the functional groups and structure of ESP. Moreover, F1-ESP-3 significantly inhibited RBL-2H3 cell degranulation by reducing depolymerization of F-actin and Ca2+ influx. F1-ESP-3 reduced the symptoms of mast cell-mediated passive cutaneous anaphylaxis, indicating that F1-ESP-3 may have better anti-allergic activity in vivo.


Assuntos
Lactobacillus , Mastócitos , Fermentação , Polissacarídeos/química , Membrana Celular/metabolismo
10.
Int J Biol Macromol ; 231: 123524, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736981

RESUMO

Agar was modified with glutaric anhydride (GA) in this study to expand its application in food and medicine. Glutaric anhydride-modified agar (GAR) can maintain high gel strength (1247.4 g/cm2) and improved transparency (82.7 %). The esterified agar formed by GA further formed a cross-linking molecule structure by increasing the reaction temperature. Notably, excellent freeze-thaw stability (24.1 %) and swelling property (3116.6 %) of GAR indicated that the carboxyl-terminal of modified agar improves its affinity with water. Therefore, satisfactory water permeability and expansive stone enable agar films to achieve high water absorption. Furthermore, GAR films exhibit a specific absorption capacity of tetracycline hydrochloride in weak acid solution, thereby suggesting its potential application as a sustainable drug delivery carrier. Finally, the structure of the modified agar was analyzed to explain the mechanism of binding water. Cryo-scanning electron microscopy (SEM) depicted the porous structure of the agar gel responsible for swelling, drug loading, and release. Low-field NMR results showed that GA improves agar gel's binding and free water content. According to our research results, these GAR hydrogel membranes with excellent properties have the potential to be used as effective drug delivery materials.


Assuntos
Materiais Biocompatíveis , Portadores de Fármacos , Ágar/química , Fenômenos Químicos , Portadores de Fármacos/química , Água/química
11.
Carbohydr Polym ; 308: 120644, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813337

RESUMO

In this study, three kinds of anhydrides with different structures were introduced into agar molecules to study the effects of varying degrees of substitution (DS) and anhydride structures on the physicochemical properties and curcumin (CUR) loading capacity. Increasing the carbon chain length and saturation of the anhydride affects the hydrophobic interaction and hydrogen bonding of the esterified agar, thereby changing the stable structure of the agar. Although the gel performance declined, the hydrophilic carboxyl group and the loose porous structure provide more binding sites for the adsorption of water molecules, hence providing excellent water retention (1700 %). Next, CUR was used as a hydrophobic active ingredient to study agar microspheres' drug encapsulation and in vitro release ability. Results showed that the excellent swelling and hydrophobic structure of esterified agar could promote the encapsulation of CUR (70.3 %). The release process is controlled by pH, and the release of CUR under weak alkaline conditions is significant, which can be explained by the pore structure, swelling characteristics, and carboxyl binding of agar. Therefore, this study shows the application potential of hydrogel microspheres in loading hydrophobic active ingredients and sustained release and provides the possibility for the application of agar in drug delivery systems.


Assuntos
Curcumina , Curcumina/química , Ágar , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas
12.
Food Chem ; 402: 134201, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36122474

RESUMO

The effects of ß-glucosidase on the volatile profiles and aroma stability of black tea juice were evaluated using gas-chromatography-mass spectrometry coupled with sensory analysis. During liquid fermentation of tea leaves, the addition of ß-glucosidase increased the concentration of aldehydes, strengthening the undesirable "green grassy" odour. However, the "green grassy" odour was counteracted by adding green tea extract during fermentation. At the same time, "flowery" flavour notes were enhanced, improving the overall aroma quality and strengthening the characteristic "sweet" aroma of black tea. Increased addition of ß-glucosidase released more free aroma alcohols from their glucosides. Two "fruity" and "floral" aroma components, benzyl alcohol and phenylethyl alcohol, were not significantly affected by heat treatment (95 °C water bath) and the overall aroma stability was not significantly affected by ß-glucosidase treatment. ß-Glucosidase treatment improved the aroma, colour and overall suitability of fermented black tea juice as an ingredient for tea-based beverages.


Assuntos
Camellia sinensis , Álcool Feniletílico , Compostos Orgânicos Voláteis , Odorantes/análise , Chá/química , beta-Glucosidase , Álcool Feniletílico/análise , Compostos Orgânicos Voláteis/análise , Camellia sinensis/química , Bebidas/análise , Aldeídos/análise , Extratos Vegetais , Glucosídeos , Álcoois Benzílicos , Água
13.
Mar Drugs ; 20(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36547930

RESUMO

κ-carrageenases are members of the glycoside hydrolase family 16 (GH16) that hydrolyze sulfated galactans in red algae, known as κ-carrageenans. In this study, a novel κ-carrageenase gene from the marine bacterium Rhodopirellula sallentina SM41 (RsCgk) was discovered via the genome mining approach. There are currently no reports on κ-carrageenase from the Rhodopirellula genus, and RsCgk shares a low identity (less than 65%) with κ- carrageenase from other genera. The RsCgk was heterologously overexpressed in Escherichia coli BL21 and characterized for its enzymatic properties. RsCgk exhibited maximum activity at pH 7.0 and 40 °C, and 50% of its initial activity was retained after incubating at 30 °C for 2 h. More than 70% of its activity was maintained after incubation at pH 6.0-8.0 and 4 °C for 24 h. As a marine derived enzyme, RsCgk showed excellent salt tolerance, retaining full activity in 1.2 M NaCl, and the addition of NaCl greatly enhanced its thermal stability. Mass spectrometry analysis of the RsCgk hydrolysis products revealed that the enzyme had high degradation specificity and mainly produced κ-carrageenan disaccharide. Comparative molecular dynamics simulations revealed that the conformational changes of tunnel-forming loops under salt environments may cause the deactivation or stabilization of RsCgk. Our results demonstrated that RsCgk could be utilized as a potential tool enzyme for efficient production of κ-carrageenan oligosaccharides under high salt conditions.


Assuntos
Tolerância ao Sal , Cloreto de Sódio , Carragenina/química , Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas de Bactérias/metabolismo
14.
Carbohydr Polym ; 297: 120035, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184179

RESUMO

A novel agar-based Pickering emulsion stabilizer was developed through the hydrophobic modification and microgelation of agar. After hexanoylation, the three-phase contact angle of hexanoylated agar (HAG) particles was adjusted from approximately 60° to 96° closing to neutral wettability. After microgelation, the particle size of the modified agar microgel was approximately 2 µm and Zeta potential reached -23.63 mV. Confocal laser microscopy and cryogenic scanning electron microscopy showed that HAG microgels formed a gel network or embedded on the surface of oil droplets, thus providing a dense barrier for oil droplets to coalesce and Ostwald ripening. The oil volume fraction and particle concentration had a significant effect on the droplet size and rheological properties of the Pickering emulsion. Pickering emulsion gels with long-term storage stability was prepared at low particle concentrations (0.7 wt%) and lower oil fractions (φ = 0.3- 0.5), which might become a new effective delivery system for bioactive substances.


Assuntos
Microgéis , Ágar , Emulsões/química , Géis/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
15.
Int J Biol Macromol ; 222(Pt A): 41-54, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156340

RESUMO

In this study, a new method for preparing macroporous rigid agarose microspheres was developed by one-step pre-crosslinking method with cyclic anhydride. Three different cyclic anhydrides, namely, maleic anhydride, succinic anhydride, and glutaric anhydride, were used to pre-crosslink agarose. The reaction temperature and the amount of cyclic anhydride in the pre-crosslinking process were optimized to endow agarose with stronger cross-linking. Under the optimal cross-linking condition, macroporous rigid agarose microspheres with homogeneous particle size were successfully obtained by adjusting emulsification method. Cryo-scanning electron microscopy was used to characterize the morphology of cross-linked agarose gel and microspheres. The addition of cyclic anhydride increased the gel aperture of cross-linked agarose microspheres, thereby making the macropores in the microspheres more dense and enhancing the mass transfer in the particles. Under low pressure, the cross-linked agarose microsphere column can effectively separate model proteins at linear flow rates three times higher than the agarose microsphere column. These results indicate that the developed agarose microspheres are a promising high-speed chromatographic medium.


Assuntos
Anidridos , Anidridos Maleicos , Microesferas , Sefarose/química , Anidridos/química , Tamanho da Partícula
16.
Mar Drugs ; 20(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35877712

RESUMO

An eco-friendly method for ι-carrageenan extraction from seaweed Eucheuma denticulatum through boiling and using a low concentration of Ca(OH)2 is reported. Compared to the traditional method of ι-carrageenan extraction using NaOH, the reported method using Ca(OH)2 had the advantages of using 93.3% less alkali and 86.8% less water, having a 25.0% shorter total extraction time, a 17.6% higher yield, and a 43.3% higher gel strength of the product. In addition, we evaluated the gel properties and structures of ι-carrageenan products extracted by Ca(OH)2 (Ca-IC) and NaOH (Na-IC). The Fourier transform infrared spectroscopy results showed that the structures of Ca-IC and Na-IC did not change remarkably. The results of the thermogravimetric analysis and differential scanning calorimetry showed that Ca-IC had the same thermal stability as Na-IC. The results of the textural analysis showed that Ca-IC had a higher hardness and better chewiness compared to Na-IC. Rheological results indicated that Ca-IC and Na-IC exhibited shear-thinning and non-Newtonian fluid properties, whereas the viscosity of Ca-IC was less than that of Na-IC. In conclusion, this new method of ι-carrageenan extraction using Ca-IC is markedly better and yields higher quality carrageenan than the conventional method of using Na-IC.


Assuntos
Rodófitas , Alga Marinha , Carragenina/química , Rodófitas/química , Hidróxido de Sódio , Viscosidade
17.
J Biotechnol ; 355: 1-9, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35772600

RESUMO

As an essential enzyme for phospholipid degradation, phospholipase C (PLC) has been used for enzymatic degumming of vegetable oils and production of valuable phospholipid derivatives. In this study, rational engineering based on B-factor analysis and molecular dynamic simulation analysis were employed to rationally identify mutation candidates and a PLC double mutant F96R/Q153P was designed from Bacillus cereus HSL3. Compared to the wild-type PLC, F96R/Q153P exhibited significantly improved thermal properties, including higher temperature optima and better thermal stability. It showed the highest optimal reaction temperature (90 °C) reported so far. F96R/Q153P displayed 4.94 times kcat and 2.37 times kcat/Km as much as the wild-type, as well as improved substrate adaptability. Structural insights revealed that the mutations caused reduced proportion of random coil and constraint of certain loop fluctuations. These results demonstrated the great potential of knowledge-based rational design for improving the catalytic characteristics of industrial enzymes in the enzymatic degumming process.


Assuntos
Bacillus cereus , Fosfolipases Tipo C , Bacillus cereus/genética , Catálise , Estabilidade Enzimática , Temperatura Alta , Cinética , Fosfolipídeos , Temperatura , Fosfolipases Tipo C/química , Fosfolipases Tipo C/genética
18.
Front Nutr ; 9: 914273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548576

RESUMO

[This corrects the article DOI: 10.3389/fnut.2022.851402.].

19.
Front Nutr ; 9: 851402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284441

RESUMO

Dietary bioactive lipids, one of the three primary nutrients, is not only essential for growth and provides nutrients and energy for life's activities but can also help to guard against disease, such as Alzheimer's and cardiovascular diseases, which further strengthen the immune system and maintain many body functions. Many microorganisms, such as yeast, algae, and marine fungi, have been widely developed for dietary bioactive lipids production. These biosynthetic processes were not limited by the climate and ground, which are also responsible for superiority of shorter periods and high conversion rate. However, the production process was also exposed to the challenges of low stability, concentration, and productivity, which was derived from the limited knowledge about the critical enzyme in the metabolic pathway. Fortunately, the development of enzymatic research methods provides powerful tools to understand the catalytic process, including site-specific mutagenesis, protein dynamic simulation, and metabolic engineering technology. Thus, we review the characteristics of critical desaturase and elongase involved in the fatty acids' synthesis metabolic pathway, which aims to not only provide extensive data for enzyme rational design and modification but also provides a more profound and comprehensive understanding of the dietary bioactive lipids' synthetic process.

20.
Mar Drugs ; 20(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35200655

RESUMO

As an important enzyme involved in the marine carbon cycle, alginate lyase has received extensive attention because of its excellent degradation ability on brown algae, which is widely utilized for alginate oligosaccharide preparation or bioethanol production. In comparison with endo-type alginate lyases (PL-5, PL-7, and PL-18 families), limited studies have focused on PL-17 family alginate lyases, especially for those with special characteristics. In this study, a novel PL-17 family alginate lyase, Aly23, was identified and cloned from the marine bacterium Pseudoalteromonas carrageenovora ASY5. Aly23 exhibited maximum activity at 35 °C and retained 48.93% of its highest activity at 4 °C, representing an excellent cold-adaptation property. Comparative molecular dynamics analysis was implemented to explore the structural basis for the cold-adaptation property of Aly23. Aly23 had a high substrate preference for poly ß-D-mannuronate and exhibited both endolytic and exolytic activities; its hydrolysis reaction mainly produced monosaccharides, disaccharides, and trisaccharides. Furthermore, the enzymatic hydrolyzed oligosaccharides displayed good antioxidant activities to reduce ferric and scavenge radicals, such as hydroxyl, ABTS+, and DPPH. Our work demonstrated that Aly23 is a promising cold-adapted biocatalyst for the preparation of natural antioxidants from brown algae.


Assuntos
Antioxidantes/farmacologia , Oligossacarídeos/farmacologia , Polissacarídeo-Liases/metabolismo , Pseudoalteromonas/metabolismo , Antioxidantes/metabolismo , Dissacarídeos/metabolismo , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/farmacologia , Hidrólise , Simulação de Dinâmica Molecular , Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/isolamento & purificação , Temperatura , Trissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA